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The effective permeability of electromagnetic metamaterials can deviate significantly from unity at high frequencies – an intriguing
property not available in natural materials. However, we show both analytically and numerically that this artificial magnetism has
limitations: the stronger the magnetic response, the less accurate the homogenization. New computational aspects of the paper include
high-order Trefftz difference schemes and highly accurate computation of Bloch modes on nonorthogonal grids, high-order absorbing
boundary conditions, and numerical implementation of new Trefftz homogenization on rhombic lattices.
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I. Introduction

ONE of the most intriguing features of artificial periodic
electromagnetic structures, known as metamaterials, is

their nontrivial magnetic response, not available in natural
media at high frequencies, and leading to remarkable phenom-
ena, notably negative refraction and cloaking (see e.g. [1]).
Much of the engineering and physical literature on the subject
of metamaterials is devoted to their optimal (in some sense)
design, whereby the effective material parameters attain a
range of values desirable for specific applications – absorption,
cloaking, lensing, etc. A tacit assumption is that there are no
principal limitations on the achievable range of parameters,
especially in the ideal case of negligible losses.

However, using our recently developed non-asymptotic ho-
mogenization theory [2], we show that such fundamental limits
do exist. More specifically, the stronger the magnetic response
(as measured by the deviation of the effective permeability
tensor from identity), the less accurate (“certain”) predictions
of the effective medium theory are. We call this the uncertainty
principle for the effective parameters of metamaterials.

II. Synopsis of the Non-Asymptotic Homogenization Theory

The homogenization problem under consideration consists
in replacing a given periodic dielectric structure with an
equivalent homogeneous body with a material tensor M to
be determined. “Equivalence” is understood in the sense of
transmission and reflection coefficients being approximately
equal in the periodic and homogeneous cases within a given
range of illumination conditions. For a detailed formulation of
this problem, see [2].
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The homogenization procedure of [2] consists in (i) finding
suitable approximations of fine-level (i.e. sub-cell) and coarse-
level (coarser than the lattice cell size a) fields, and (ii) estab-
lishing a constitutive relationship between the pairs of coarse
fields (D,B) and (E,H). No assumptions other than the intrinsic
linearity of the constituent materials of the structure are made;
in particular, anisotropy and magnetoelectric coupling may
exist.

On both coarse and fine levels, we employ Trefftz ap-
proximations – i.e. approximations by functions satisfying
the underlying equations and boundary conditions: e.g. Bloch
waves on the fine level and plane waves on the coarse level.
Trefftz functions have excellent approximation properties in
many cases, even for bases of small size [5]–[8]

The end result of this analysis can be expressed in a
particularly simple form if the tensor is known from symmetry
considerations to be diagonal. Then, say, the xx component of
the effective magnetic permeability is [2]

µxx =

∑
α(qα × [eα])x [hαx]∗

k0
∑
α

∣∣∣∣[hαx]
∣∣∣∣2 , (1)

where the asterisk denotes complex conjugation, k0 is the
wavenumber in free space, q is the Bloch vector of a basis
wave, α is the index of the Bloch mode, h is the magnetic field
of that mode, and square brackets denote surface averages of
the tangential components of fields [2].

III. The Uncertainty Principle

Our theoretical analysis outlined above, along with a body of
numerical evidence, lead to the following uncertainty principle
for the magnetic response of intrinsically nonmagnetic periodic
structures: the stronger the magnetic effects in metamaterials,
the less accurate the effective parameter representation. In
practice, there is still room for engineering design, but the



Fig. 1. Absolute value of E for the Bloch mode propagating to the right.
Triangular lattice of cylindrical air holes from [10]. a/λ = 0.365 (close to the
Γ-point in the second band). Red circle: air hole in a host dielectric.

trade-offs between magnetic response and the accuracy of
homogenization must always be borne in mind.

To avoid unnecessary technical complications, we assume
that the material tensor is diagonal, in which case (1) applies.
Straightforward algebra then shows that magnetic effects are
due to higher-order harmonics of the Bloch wave, and therefore
any methods relying only on the main Fourier harmonic of
Bloch waves will not be able to reproduce these effects as a
matter of principle. In other words, strong magnetic response
(of intrinsically nonmagnetic structures) can only be observed
if Bloch waves are significantly different from plane waves.

But it can be shown that the homogenization error also
depends strongly on the same higher-order Bloch harmonics.
Thus magnetic effects and homogenization errors go hand in
hand, giving rise to the uncertainty principle.

IV. Numerical Examples

As an instructive example, we consider the triangular lattice
of cylindrical air holes in a dielectric host, as investigated
previously in [10]. The elementary cell of this lattice and the
absolute value of the electric field of a Bloch wave are shown
in Fig. 1. The radius of the hole is rcyl = 0.42a, the dielectric
permittivity of the host is εhost = 12.25; s-polarization (TM-
mode, one-component E field perpendicular to the plane of
the figure).

This example is interesting because it exhibits a particularly
high level of isotropy around the Γ-point in the second photonic
band.

Even in this highly isotropic case the uncertainty princi-
ple remains valid. First, isotropy with respect to the Bloch
wavenumber is not accompanied by isotropy of the Bloch
impedance (see [2], [9] for details on the latter). This leads
to appreciable magnetoelectric coupling represented by the E-
Hx and E-Hy terms in the 3×3 matrixM that relates (D, Bx, By)
to (E,Hx,Hy). Even with this coupling, strong magnetic effects
are accompanied by appreciable surface waves (SW) [2], [4],
[11]. The magnitude of SW is evaluated via the difference δB

(in the Euclidean norm) between an accurate (order six) finite
difference solution of the full-scale wave propagation problem
and its best approximation by Bloch waves. Large values of

Fig. 2. Errors in the transmission and reflection coefficients, and the error δB
of Bloch fit (see text) vs a/λ for the rhombic lattice of [10]. Large values of
δB (“Bloch fit error”) indicate an appreciable surface wave. 0.22 . a/λ . 0.28
is the bandgap.

δB indicate the presence of an appreciable SW in addition
to Bloch waves. As Fig. 2 shows, errors in the transmission
and reflection coefficients (markers vs. solid lines) correlate
strongly with δB (dashed line, crosses).

V. Conclusion
A non-asymptotic homogenization procedure is summarized

and an uncertainty principle formulated: the stronger the mag-
netic response of periodic structures, the less accurate their ho-
mogenization. New computational features include high-order
Trefftz difference schemes and highly accurate computation of
Bloch modes on nonorthogonal grids, high-order absorbing
boundary conditions, and numerical implementation of new
Trefftz homogenization on rhombic lattices (details omitted due
to the page limit but will be presented at the conference.)
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